Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Millimetre-scale bioresorbable optoelectronic systems for electrotherapy

Abstract

Temporary pacemakers are essential for the care of patients with short-lived bradycardia in post-operative and other settings1,2,3,4. Conventional devices require invasive open-heart surgery or less invasive endovascular surgery, both of which are challenging for paediatric and adult patients5,6,7,8. Other complications9,10,11 include risks of infections, lacerations and perforations of the myocardium, and of displacements of external power supplies and control systems. Here we introduce a millimetre-scale bioresorbable optoelectronic system with an onboard power supply and a wireless, optical control mechanism with generalized capabilities in electrotherapy and specific application opportunities in temporary cardiac pacing. The extremely small sizes of these devices enable minimally invasive implantation, including percutaneous injection and endovascular delivery. Experimental studies demonstrate effective pacing in mouse, rat, porcine, canine and human cardiac models at both single-site and multi-site locations. Pairing with a skin-interfaced wireless device allows autonomous, closed-loop operation upon detection of arrhythmias. Further work illustrates opportunities in combining these miniaturized devices with other medical implants, with an example of arrays of pacemakers for individual or collective use on the frames of transcatheter aortic valve replacement systems, to provide unique solutions that address risks for atrioventricular block following surgeries. This base technology can be readily adapted for a broad range of additional applications in electrotherapy, such as nerve and bone regeneration, wound therapy and pain management.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of injectable, self-powered, bioresorbable cardiac pacemakers with wireless, optoelectronic control.
Fig. 2: Optoelectronic characteristics and ex vivo pacing with human and porcine hearts.
Fig. 3: In vivo demonstration of pacemaker injection and closed-chest pacing in canine model.
Fig. 4: In vivo demonstration of multi-site, time-synchronized pacing in canine models.
Fig. 5: Design of a wireless, skin-interfaced optoelectronic system for closed-loop cardiac electrotherapy.
Fig. 6: Ex vivo demonstration of cardiac pacing with a collection of pacemakers integrated with a TAVR valve in a human heart.

Similar content being viewed by others

Data availability

The data supporting the results of this study are present in the paper and Supplementary InformationSource data are provided with this paper.

Code availability

The code for connecting to the device via BLE, recording and analysing ECG data in real time, and configuring the pacing parameters in a closed-loop system is available on Code Ocean at https://codeocean.com/capsule/9406347/tree/v1 (ref. 49).

References

  1. Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  2. Zhang, Y. et al. Advances in bioresorbable materials and electronics. Chem. Rev. 123, 11722–11773 (2023).

    Article  CAS  PubMed  Google Scholar 

  3. Choi, Y. S. et al. A transient, closed-loop network of wireless, body-integrated devices for autonomous electrotherapy. Science 376, 1006–1012 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  4. Lumia, F. J. & Rios, J. C. Temporary transvenous pacemaker therapy: an analysis of complications. Chest 64, 604–608 (1973).

    Article  CAS  PubMed  MATH  Google Scholar 

  5. Wood, M. A. & Ellenbogen, K. A. Cardiac pacemakers from the patient’s perspective. Circulation 105, 2136–2138 (2002).

    Article  PubMed  MATH  Google Scholar 

  6. Bar-Cohen, Y. et al. Minimally invasive implantation of a micropacemaker into the pericardial space. Circ. Arrhythm. Electrophysiol. 11, e006307 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhao, J. et al. Permanent epicardial pacing in neonates and infants less than 1 year old: 12-year experience at a single center. Transl. Pediatr. 11, 825–833 (2022).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  8. Wildbolz, M., Dave, H., Weber, R., Gass, M. & Balmer, C. Pacemaker implantation in neonates and infants: favorable outcomes with epicardial pacing systems. Pediatr. Cardiol. 41, 910–917 (2020).

    Article  PubMed  Google Scholar 

  9. Wilhelm, M. J. et al. Cardiac pacemaker infection: surgical management with and without extracorporeal circulation. Ann. Thorac. Surg. 64, 1707–1712 (1997).

    Article  CAS  PubMed  MATH  Google Scholar 

  10. Donovan, K. D. & Lee, K. Y. Indications for and complications of temporary transvenous cardiac pacing. Anaesth. Intensive Care 13, 63–70 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. BRAUN, M. U. et al. Percutaneous lead implantation connected to an external device in stimulation-dependent patients with systemic infection—a prospective and controlled study. Pacing Clin. Electrophysiol. 29, 875–879 (2006).

    Article  ADS  PubMed  MATH  Google Scholar 

  12. Ouyang, H. et al. Symbiotic cardiac pacemaker. Nat. Commun. 10, 1821 (2019).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  13. Lyu, H. et al. Synchronized biventricular heart pacing in a closed-chest porcine model based on wirelessly powered leadless pacemakers. Sci. Rep. 10, 2067 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  14. Ho, J. S. et al. Wireless power transfer to deep-tissue microimplants. Proc. Natl Acad. Sci. USA 111, 7974–7979 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  15. Wang, S. et al. A self-assembled implantable microtubular pacemaker for wireless cardiac electrotherapy. Sci. Adv. 9, eadj0540 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Prominski, A. et al. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues. Nat. Mater. 21, 647–655 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Liu, Z. et al. Photoelectric cardiac pacing by flexible and degradable amorphous Si radial junction stimulators. Adv. Healthc. Mater. 9, 1901342 (2020).

    Article  CAS  Google Scholar 

  18. Wang, L. et al. A fully biodegradable and self-electrified device for neuroregenerative medicine. Sci. Adv. 6, eabc6686 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y. et al. Self-powered, light-controlled, bioresorbable platforms for programmed drug delivery. Proc. Natl. Acad. Sci. USA 120, e2217734120 (2023).

  20. Huang, I. et al. High performance dual-electrolyte magnesium–iodine batteries that can harmlessly resorb in the environment or in the body. Energy Environ. Sci. 15, 4095–4108 (2022).

    Article  CAS  MATH  Google Scholar 

  21. Won, S. M. et al. Natural wax for transient electronics. Adv. Funct. Mater. 28, 1801819 (2018).

    Article  MATH  Google Scholar 

  22. Choi, Y. S. et al. Biodegradable polyanhydrides as encapsulation layers for transient electronics. Adv. Funct. Mater. 30, 2000941 (2020).

    Article  CAS  Google Scholar 

  23. Song, G. Control of biodegradation of biocompatable magnesium alloys. Corros. Sci. 49, 1696–1701 (2007).

    Article  CAS  MATH  Google Scholar 

  24. Schauer, A. et al. Biocompatibility and degradation behavior of molybdenum in an in vivo rat model. Materials 14, 7776 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  25. Yin, L. et al. Dissolvable metals for transient electronics. Adv. Funct. Mater. 24, 645–658 (2014).

    Article  CAS  MATH  Google Scholar 

  26. Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  27. Kang, S.-K. et al. Bioresorbable silicon electronic sensors for the brain. Nature 530, 71–76 (2016).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  28. Li, G. et al. Flexible transient phototransistors by use of wafer‐compatible transferred silicon nanomembranes. Small 14, e1802985 (2018).

    Article  ADS  PubMed  Google Scholar 

  29. Li, G. et al. Silicon nanomembrane phototransistor flipped with multifunctional sensors toward smart digital dust. Sci. Adv. 6, eaaz6511 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. López Ayerbe, J. et al. Temporary pacemakers: current use and complications. Rev. Esp. Cardiol. Engl. Ed. 57, 1045–1052 (2004).

    Article  MATH  Google Scholar 

  31. Yu, L., Nina-Paravecino, F., Kaeli, D. & Fang, Q. Scalable and massively parallel Monte Carlo photon transport simulations for heterogeneous computing platforms. J. Biomed. Opt. 23, 1 (2018).

    Article  PubMed  Google Scholar 

  32. Fang, Q. & Boas, D. A. Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt. Express 17, 20178 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Taroni, P., Pifferi, A., Torricelli, A., Comelli, D. & Cubeddu, R. In vivo absorption and scattering spectroscopy of biological tissues. Photochem. Photobiol. Sci. 2, 124–129 (2003).

    Article  CAS  PubMed  MATH  Google Scholar 

  34. Khan, R., Gul, B., Khan, S., Nisar, H. & Ahmad, I. Refractive index of biological tissues: review, measurement techniques, and applications. Photodiagnosis Photodyn. Ther. 33, 102192 (2021).

    Article  CAS  PubMed  MATH  Google Scholar 

  35. Green, M. A. & Keevers, M. J. Optical properties of intrinsic silicon at 300 K. Prog. Photovoltaics Res. Appl. 3, 189–192 (1995).

    Article  CAS  Google Scholar 

  36. Firbank, M., Hiraoka, M., Essenpreis, M. & Delpy, D. T. Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys. Med. Biol. 38, 503–510 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Rahko, P. S. Evaluation of the skin-to-heart distance in the standing adult by two-dimensional echocardiography. J. Am. Soc. Echocardiogr. 21, 761–764 (2008).

    Article  PubMed  MATH  Google Scholar 

  38. Chen, R. et al. Deep brain optogenetics without intracranial surgery. Nat. Biotechnol. 39, 161–164 (2021).

    Article  CAS  PubMed  MATH  Google Scholar 

  39. Yin, R. T. et al. Open thoracic surgical implantation of cardiac pacemakers in rats. Nat. Protoc. 18, 374–395 (2023).

    Article  CAS  PubMed  MATH  Google Scholar 

  40. Yang, Q. et al. Photocurable bioresorbable adhesives as functional interfaces between flexible bioelectronic devices and soft biological tissues. Nat. Mater. 20, 1559–1570 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  41. Shea, J. B. & Sweeney, M. O. Cardiac resynchronization therapy a patient’s guide. Circulation 108, e64–e66 (2003).

  42. Connolly, S. J., Kerr, C., Gent, M. & Yusuf, S. Dual-chamber versus ventricular pacing. Circulation 94, 578–583 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Rodés-Cabau, J., Muntané-Carol, G. & Philippon, F. Managing conduction disturbances after TAVR: toward a tailored strategy. JACC Cardiovasc. Interv. 14, 992–994 (2021).

    Article  PubMed  MATH  Google Scholar 

  44. Urena, M. & Rodés-Cabau, J. Conduction abnormalities: the true Achilles’ heel of transcatheter aortic valve replacement? JACC Cardiovasc. Interv. 9, 2217–2219 (2016).

    Article  PubMed  Google Scholar 

  45. Pagnesi, M. et al. Incidence, predictors, and prognostic impact of new permanent pacemaker implantation after TAVR with self-expanding valves. JACC Cardiovasc. Interv. 16, 2004–2017 (2023).

    Article  PubMed  MATH  Google Scholar 

  46. Reiter, C. et al. Delayed total atrioventricular block after transcatheter aortic valve replacement assessed by implantable loop recorders. JACC Cardiovasc. Interv. 14, 2723–2732 (2021).

    Article  PubMed  Google Scholar 

  47. Muntané-Carol, G. et al. Ambulatory electrocardiographic monitoring following minimalist transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 14, 2711–2722 (2021).

    Article  PubMed  Google Scholar 

  48. Krishnaswamy, A. et al. Feasibility and safety of same-day discharge following transfemoral transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 15, 575–589 (2022).

    Article  PubMed  MATH  Google Scholar 

  49. Millimetre-scale, bioresorbable optoelectronic systems for minimally invasive electrotherapy. Code Ocean https://codeocean.com/capsule/9406347/tree/v1 (2025).

Download references

Acknowledgements

We acknowledge support from the Querrey Simpson Institute for Bioelectronics, the Leducq Foundation grant ‘Bioelectronics for Neurocardiology’ and the NIH grant (NIH R01 HL141470). Y.Z. acknowledges support from the National University of Singapore start-up grant and the AHA’s Second Century Early Faculty Independence Award (grant: https://doi.org/10.58275/AHA.23SCEFIA1154076.pc.gr.173925). J. Gong and Z.M. acknowledge the support from AFOSR (grant number FA9550-21-1-0081). We thank E. Dempsey, Q. Ma, N. Ghoreishi-Haack, I. Stepien and S. Han for the help in the biocompatibility study and animal experiment. This work made use of the NUFAB facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN and Northwestern’s MRSEC programme (NSF DMR-1720139). This work was supported by the Developmental Therapeutics Core and the Center for Advanced Molecular Imaging (RRID:SCR_021192) at Northwestern University and the Robert H. Lurie Comprehensive Cancer Center support grant (NCI P30 CA060553).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and J.A.R. initiated and conceived the self-powered, light-controlled pacing concept. Y.Z., E.R., I.R.E. and J.A.R. designed the studies and analysed the results. Y.Z., L.Z., K.Z., X.L., A.L., G.J., J.L., F.L., Y.F.L.L., Y.L., C.H., A.H. and R.N. fabricated and characterized the pacemakers. E.R., L.T., A. Mikhailov, L.D., A.B., A.P., A.A. and A. Melisova conducted animal surgeries. Y.Z., E.R., L.Z., L.T., A. Mikhailov, L.D., J.W., A.B., A.P. and W.O., performed in vivo and ex vivo cardiac pacing experiments. W.O., Y.W., J. Gu, T.Y., Y.Y. and Y.L. developed closed-loop and optical control systems. J.U.K., S.G.S., J. Gong, J.J., J.C., S.H.J. and Z.M. designed and fabricated phototransistors. H.Z., S.L., Z.L. and Y.H. performed computational simulations. E.A. and W.B. fabricated bioresorbable optical filters. T.W., N.S.P. and J.M.T. developed and synthesized the hydrogels. L.T., L.D. and K.B. evaluated the biocompatibility. Y.Z., E.R., L.Z., J.U.K., L.T., A. Mikhailov., K.Z., X.L., Y.W., H.Z., A.L., E.A., G.J., S.L., S.G.S., K.B., N.L., W.O., R.K.A., I.R.E. and J.A.R. discussed and interpreted the data. Y.Z. and J.A.R. prepared figures and wrote the paper, with input from E.R., W.O., A. Mikhailov, R.K.A. and I.R.E. In addition, J.U.K., L.Z., L.T., Y.W., H.Z., S.L. and J. Gu. assisted with the preparation of figures and text. Y.Z., L.Z., L.T., H.Z., L.D., W.O., I.R.E. and J.A.R. revised the paper. Y.Z., E.R., L.Z., J.U.K., L.T. and H.Z. contributed equally to this work.

Corresponding authors

Correspondence to Yamin Zhang, Yonggang Huang, Wei Ouyang, Rishi K. Arora, Igor R. Efimov or John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Gábor Duray, Hossam Haick and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Comparisons of previously reported pacemakers and the technology introduced here.

a, Comparisons between conventional pacemakers with leads, leadless pacemakers, bioresorbable pacemakers, and the pacemaker reported here. b, Table showing details of previously reported leadless pacemakers and the pacemaker reported here. Illustration of the pacemaker with leads in a was created with BioRender.com (https://biorender.com). Bioresorbable pacemaker in a adapted from ref. 1, Springer Nature America, Inc.

Extended Data Fig. 2 Characteristics of bipolar junction transistor (BJT)-based phototransistors.

a,b, Characteristic curves of the phototransistors under various light intensities emitted from a NIR LED (850 nm, a) and a red LED (650 nm, b).

Extended Data Fig. 3 Measurement of the operational lifespan of the device.

a, EIS of an agarose gel and chicken tissue. b, The output currents of the pacemaker over days. c, Output currents of the pacemaker over days under pulsed illumination.

Extended Data Fig. 4 In vivo demonstration of cardiac pacing in mouse models.

a, Photograph showing a pacemaker placed on the surface of a mouse heart. b, ECG results before and during mouse heart pacing. c, Strength-duration curve when pacing at 480 bpm. n =  3 biologically independent animals.

Extended Data Fig. 5 Selection of LEDs and optical filters for multi-site, time-synchronized cardiac pacing.

a, Emission spectra for LEDs 1 and 2. b, Transmission curves for filters 1 and 2. c, Transmitted light intensities as a function of incident intensities from LEDs 1 and (2) for filters 1 and 2.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1–11, Tables 1–3, Figs. 1–26 and References.

Reporting Summary

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Rytkin, E., Zeng, L. et al. Millimetre-scale bioresorbable optoelectronic systems for electrotherapy. Nature 640, 77–86 (2025). https://doi.org/10.1038/s41586-025-08726-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-025-08726-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing